Электрик - электричество и энергетика

Эта статья опубликована на сайте Электрик - электричество и энергетика
  http://www.electrik.org/

URL этой статьи:
  http://www.electrik.org/news/article170.php

Люминесцентные лампы и их характеристики (часть3)

Статьи /
Послано electrik 24 Июл, 2005 г. - 16:52




С.И. Паламаренко, г Киев

Часть 3. Методы бесстартерного зажигания ламп и классификация схем, схемы включения люминесцентных ламп с применением полупроводниковых приборов, работа люминесцентных ламп на постоянном токе, работа люминесцентных ламп на повышенной частоте, регулирование яркости люминесцентных ламп




Методы бесстартерного зажигания ламп и классификация схем

Наличие стартеров усложняет обслуживание, затягивает процесс зажигания, иногда приводит к неприятным миганиям отдельных ламп, в некоторых случаях неисправности стартера ("залипа-ние") могут приводить к выходу из строя исправных ламп. Поэтому предложено большое количество различных ПРА бесаартерного зажигания.

В зависимости от использованного режима существующие схемы бесстартерного зажигания ЛЛ дугового разряда делятся на две группы: схемы быстрого зажигания - с предварительным нагревом катодов, которые должны обеспечить "горячее зажигание" (их можно применить для ламп, у которых катоды имеют по два вывода), и схемы мгновенного зажигания - без предварительного накала катодов, рассчитанные на "холодное зажигание" (в этих схемах следует использовать лампы со специальными катодами). Для создания экономичных бесстартерных аппаратов необходимо снизить напряжение зажигания ламп до величины, меньшей напряжения в сети, с учетом его падения. Наиболее эффективными путями снижения напряжения зажигания являются предварительный накал катодов и применение проводящих полосок на колбе (или вблизи лампы).

люминесцентные лампы

При наличии полоски, соединенной с электродом, и накале катодов напряжение зажигания для ламп 30 и 40 Вт удается снизить до 130-150 В. Кроме того, на напряжение зажигания оказывают большое влияние такие факторы, как влажность и температура окружающего воздуха, состав и давление наполняющего газа, конструкция и состояние электродов и др.

О напряжении зажигания даже для одной лампы можно говорить только как о статистической величине, имеющей некоторое распределение. Поэтому зависимости напряжения зажигания от различных факторов должны изображаться в виде зоны, ширину которой следует строить по законам статистики. На

рис.10 показаны области, соответствующие различным условиям зажигания.

 

В области I лампа не зажигается, область II соответствует зажиганию при холодных катодах - область "холодных" зажиганий. Она наименее благоприятна для срока службы ламп с подогревными катодами. Область III соответствует зажиганию при достаточно прогретых катодах - область "горячих" зажиганий. В области IV возможны холодные зажигания, несмотря на ток подогрева катодов, достаточный для "горячего" зажигания.

Схемы быстрого зажигания должны обеспечивать предварительный накал катодов, достаточный для того, чтобы лампы работали в области "горячего" зажигания; подачу на лампу напряжения, гарантирующего "горячее" зажигание дугового разряда с учетом возможного разброса параметров ламп, пониженного напряжения в сети и других неблагоприятных факторов и по возможности исключающего "холодные" зажигания. Для гарантированного зажигания ламп без "полоски" (верхняя граница области III) требуется эффективное напряжение холостого хода не ниже 250-300 В (т.е. выше напряжения сети).

Наличие полосок и предварительный накал катодов позволяют при напряжении сети не ниже 210-220 В обойтись без дополнительного повышения напряжения, что значительно упрощает схемы ПРА. Поэтому во всех схемах без повышения напряжения необходимо применять "полоски". С этой целью выпускают специальные лампы с нанесенной на поверхность проводящей прозрачной полосой или общим покрытием. Следует подчеркнуть, что в сетях со значительным снижением напряжения подобные схемы не обеспечивают надежного зажигания ламп.

На

рис.11 показаны схемы, рассчитанные на работу с полоской. Предварительный накал катодов осуществляется от специальных накальных обмоток через автотрансформатор, первичная обмотка которого включена параллельно лампе. Сопротивление обмотки Z3 выбирается значительно больше Z , чтобы при негорящей лампе все напряжение сети падало на Z3 и в накальных обмотках возникала ЭДС, достаточная для нагрева катодов

(рис.11,а). После зажигания лампы напряжение на Z3 падает, вследствие чего автоматически уменьшается ЭДС накальных обмоток и подкал катодов. Схема

рис.11,6 аналогична схеме рис. 12,а, но для небольшого повышения напряжения холостого хода последовательно с первичной обмоткой автотрансформатора включен конденсатор. В таких схемах обычно используется явление феррорезонанса. В схемах быстрого пуска следует применять ЛЛ с низкоомными катодами.

Поскольку бесстартерные ПРА для ЛЛ имеют значительно большие массу, габариты и потери мощности, чем стартерные, их следует применять только в специальных случаях, когда стартерные схемы неприменимы.

люминесцентные лампы

Световой поток (яркость) ЛЛ можно регулировать путем изменения силы тока разряда. При этом во избежание быстрого разрушения катодов и погасания разряда при значительном снижении тока необходимо поддерживать постоянно накал катодов и обеспечивать условия перезажигания разряда. Изменение тока лампы возможно осуществлять путем изменения напряжения питания, сопротивления балласта и фазы зажигания разряда.

В простейшем случае

рис.12,а) последовательно с лампой кроме дросселя включают резистор с переменным сопротивлением. Подогрев катодов осуществляется накальным трансформатором, а для облегчения зажигания и перезажигания применена проводящая полоса. Схема приемлема для небольшого числа ламп.

Изменение сопротивления дросселя обычно осуществляется путем под-магничивания его сердечника постоянным током. Для этого на дросселе без воздушного зазора делают две обмотки: одну подключают последовательно лампе, а вторая служит для подмагничивания. Дроссель рассчитывают так, чтобы при разомкнутой дополнительной обмотке ток лампы составлял несколько процентов от номинального. При включении нагрузки в дополнительную обмотку дросселя и изменении ее вплоть до короткого замыкания можно увеличивать ток в цепи лампы до номинального. В схеме под-

держивается независимый подкал катодов. Существуют и другие схемы магнитного регулирования, например, путем перемещения сердечника. Недоаатками этого метода является громоздкость аппаратов и большие потери.

В схеме

рис. 12,6 регулирование светового потока осуществляется путем изменения напряжения питания через регулятор напряжения, а для расширения пределов регулирования параллельно источнику питающего напряжения через развязывающий и запирающий фильтры подключен вспомогательный маломощный источник высокой частоты (5-15 кГц), обеспечивающий зажигание и перезажигание ламп при малом питающем напряжении. Мощность вспомогательного источника ВЧ составляет около 1% мощности ламп. Схема позволяет осуществлять плавное регулирование яркости ЛЛ в пределах 1-200, и ее можно использовать в любой действующей осветительной установке без существенной переделки.

На

рис.12,в показана принципиальная схема фазового регулирования яркости ЛЛ. Обычно регулирование осущеавляется тиристорами Т1 и Т2. С увеличением пауз тока растет напряжение зажигания. Поэтому, как и в других подобных схемах, необходимы непрерывный подогрев катодов и применение ламп с проводящей заземленной полосой. При работе на частоте 50 Гц с ростом пауз тока увеличиваются пульсации яркости.

 



Схемы включения люминесцентных ламп



с применением полупроводниковых приборов

Шунтирование электродов лампы диодами или терморезисторами с отрицательным температурным коэффициентом в сочетании с обычной стартерной схемой включения позволяет повысить срок службы ламп, уменьшить мощность, потребляемую ПРА и увеличить световые параметры ламп.

На

рис. 13,а показана схема с шунтированием электродов ламп, в которой в качестве шунтирующего элемента применены терморезисторы (ТР) с отрицательным температурным коэффициентом. Схема работает следующим образом. В пусковой период при замыкании контактов стартера в цепи начинает протекать пусковой ток. Так как в холодном состоянии сопротивление ТР в 10 раз больше, чем его сопротивление в горячем состоянии, то примерно 90% пускового тока будет протекать через электроды лампы. Это обеспечивает предварительный прогрев электродов, и после нескольких последовательных контактирований электродов стартера лампа зажигается. В рабочем режиме ток лампы, протекая по ТР, разогревает его, и по прошествии 15-30 с наступает термодинамическое равновесие, когда сопротивление ТР достигает своего минимального значения. При этом рабочий ток лампы перераспределяется и проходит частично через ТР и частично через электрод. Выбирая минимальное сопротивление ТР примерно равным сопротивлению электрода лампы в горячем состоянии, можно добиться того, что рабочий ток лампы будет разветвляться на два тока. Тогда оба конца электрода будут эквипотенциальны, и лампа начнет работать в режиме, близком к режиму с двумя катодными пятнами.

При таком режиме работы лампы срок ее службы увеличивается. Наличие шунтирующего ТР также обеспечивает защиту лампы от перегрузки при замыкании электродов стартера. В таком аварийном режиме пусковой ток разогревает ТР, и с уменьшением его сопротивления примерно половина пускового тока будет протекать через ТР, минуя электроды лампы, и тем самым будет осуществлена защита лампы от перегрузки.

Схема обладает также и рядом недостатков. В пусковом режиме схема работает как обычная стартерная с присущими ей недостатками. Другой недостаток состоит в том, что после выключения лампы нужно дать время на остывание терморезистора. Если этого не делать, то шунтирующее действие ТР приведет к недогреву электродов лампы и ее холодному зажиганию. Это снижает надежность зажигания ламп.

люминесцентные лампы

Терморезистор, применяемый для шунтирования электродов лампы, должен удовлетворять определенным требованиям. Он должен быть рассчитан на номинальный ток не менее 0,65 А, его холодное сопротивление (при 20°С) должно быть не менее 350-400 Ом, сопротивление по истечении 0,5-1 мин после включения схемы должно составлять не менее 100 Ом, горячее сопротивление должно быть не более 20 Ом.

На

рис. 13,6 приведена схема, в которой в качестве шунтирующего элемента применены полупроводниковые диоды, включенные встречно друг другу. Схема работает следующим образом. В пусковом режиме каждый полупериод ток проходит только через один шунтирующий диод и уже через 0,01 с достигает почти установившегося значения (для ламп 40 Вт ток равен 0,35 А при напряжении сети 200 В). В этом случае шунтирование электрода лампы диодом приводит к уменьшению тока предварительного подогрева, что может вызвать либо затягивание процесса зажигания лампы, либо ее холодное зажигание. В рабочем режиме каждый полупериод один диод открыт, другой закрыт. Открытым будет тот диод, который шунтирует электрод, работающий в катодном режиме. При открытом диоде рабочий ток лампы проходит по обоим выводам электрода. По мере перемещения катодного пятна по виткам электрода ток в одном проводе уменьшается, в другом увеличивается, оставаясь в среднем за период меньше номинального тока в каждой части электрода. Экспериментально доказано, что в этой схеме температура катодного пятна уменьшается, а его площадь увеличивается. При этом срок службы ламп несколько увеличивается, уменьшаются потери мощности в лампе и на 4-5% повышается их световая отдача.

Для улучшения пусковых характеристик схемы можно применить дополнительную катушку wд

(рис. 13,в), намотанную на общий с основным дросселем магнитопровод (встречно по отношению к основной). При этом в пусковом режиме уменьшается полное сопротивление цепи и увеличивается ток предварительного подогрева (приближается к току подогрева для обычной стартерной схемы). В качестве шунтирующих диодов можно применить диоды с допустимым обратным напряжением не менее 10 В и с прямым током не менее 0,3 А.

Вместо стартеров тлеющего разряда можно с успехом использовать динисторы. Вольт-амперная характеристика динистора имеет участок с отрицательным дифференциальным сопротивлением. В пусковом режиме

(рис. 14,а) при подаче на лампу напряжения питания в каждый положительный полупериод динистор остается закрытым до тех пор, пока мгновенное напряжение, приложенное к динистору, ниже включающего напряжения. Сопротивление динистора в закрытом состоянии составляет несколько десятком мегаом, поэтому ток в цепи будет весьма малым. После переключения динистора в проводящее состояние в цепи устанавливается ток предварительного подогрева и начинается процесс подогрева электродов. Напряжение на лампе при этом снижается примерно до 2 В (остаточное напряжение на динисторе ДТ1 и падение напряжения на диоде Д2). Диод в схему включают в случае, когда обратное напряжение динистора меньше амплитуды напряжения в сети.

В отрицательные полупериоды динистор закрыт, ток через электроды лампы не проходит, и напряжение на лампе равно напряжению сети. Описанный процесс автоматически повторяется до тех пор, пока электроды лампы не прогреются, и в лампе не возникнет дуговой разряд. После зажигания лампы напряжение на ней снизится до рабочего напряжения, и динистор останется закрытым, если рабочее напряжение на лампе ниже напряжения включения динистора.

Процесс зажигания лампы в схеме с динистором по сравнению с обычной стартерной схемой имеет то отличие, что разрыв контактов стартера может произойти в любой момент (при различных значениях тока предварительного подогрева, в том числе и при максимальном), а в схеме с динистором - в момент его выключения. Время зажигания лампы для ПРА с динистором обычно составляет 0,5-2 с.

Недостаток схемы заключается в следующем. В процессе горения лампы наблюдаются пики перезажигания, которые могут достигать до 30% амплитуды рабочего напряжения на лампе и иметь длительность до 400 мкс. Из-за этого приходится повышать напряжение включения динистора, так как возможны ложные срабатывания динистора из-за пиков перезажигания. Повышение напряжения включения приводит к уменьшению угла отсечки, что ухудшает эксплуатационные характеристики схемы.

Для устранения этого недостатка предложена схема

рис. 14,б, где для подавления пика перезажигания последовательно с динистором и диодом включена дополнительная индуктивность в виде небольшого дросселя Lfl, а параллельно - резистор гд. Опытным путем установлено, что сопротивление гд не должно быть ниже 10 кОм. Постоянную времени добавочной цепи тд = Lд/rд выбирают из условия ее равенства половине длительности пика перезажигания, т.е. примерно 200 мкс. Исходя из этого, индуктивность дросселя должна быть не менее 2 Гн. Но введение такого элемента уменьшает пусковой ток лампы. Поэтому дополнительная индуктивность должна иметь нелинейную вольт-амперную характеристику, обеспечивающую получение большой индуктивности при малых токах (рабочий режим) и малую индуктивность при больших токах (пусковой режим). Такую индуктивность можно получить при использовании дросселя с ферритовым кольцевым магнитопроводом. Экспериментальная проверка показала, что получается снижение напряжения на динисторе на 50-75%.

На

рис.14,в показана схема, в которой применены два динистора и rC-цепочка. В момент включения схемы конденсатор С через диод и резистор r1 заряжается, и напряжение на нем близко к амплитудному

напряжению сети. Как только напряжение на С станет равным напряжению включения динистора ДТ2, он включается, и все напряжение сети будет приложено к динистору ДТ1, который тоже включается. После этого начинается режим прогрева электродов лампы. Дальше схема работает так же, как и схема рис. 14,а. Резистор rогр ограничивает ток через ДТ2 при разряде конденсатора С, а резистор r2 является разрядным сопротивлением конденсатора. Сопротивления резисторов r1 = 50 кОм; г2 = 500 кОм, а емкость С = 2000 пФ.

Вместо динисторов можно применить тиристор

(рис. 14,г). В цепь управляющего электрода тиристора включен стабилитрон, напряжение стабилизации которого выбрано близким к напряжению переключения тиристора. В этом случае схема будет работать аналогично схеме с одним динистором.

Применение в схемах включения люминесцентных ламп термосопротивлений с положительным температурным коэффициентом-позисторов представляет возможность обеспечить бесстартер-ное зажигание ламп без применения накальных трансформаторов.

На

рис.15 показаны два варианта схем с использованием по-зисторов. На рис. 15,а позистор включен параллельно лампе вместо стартера. Зажигание лампы осуществляется следующим образом. В холодном состоянии позистор имеет такое сопротивление, что начальный ток предварительного подогрева электродов примерно равен номинальному току лампы. По мере нагрева позистора его сопротивление уменьшается до тех пор, пока не достигнет точки Кюри. В этот период растет ток предварительного подогрева. Начиная с точки Кюри, сопротивление позистора резко возрастает, а вместе с этим растет напряжение на лампе, и при достижении напряжения зажигания лампа зажигается. После зажигания ток через позистор становится малым, и потери в нем составляют 4-5% мощности лампы. Время зажигания лампы мощностью 40 Вт при опытной проверке этой схемы составило 8,7 с. Лампа должна быть снабжена заземленной проводящей полосой либо должен применяться заземленный металлический светильник. Сопротивление позистора зависит от его температуры, поэтому для повторного зажигания лампы позистор должен остыть до температуры, близкой к температуре окружающей среды, на что требуется 4-5 мин. Это недостаток всех схем, связанных с использованием термосопротивлений.

Преимущества, создаваемые применением позисторов, - высокая надежность, долговечность (обеспечивает более 106 включений), увеличение срока службы ламп за счет снижения вероятности холодных зажиганий и малые потери мощности в пуско-регулирующей аппаратуре (ПРА) по сравнению с бесстартерны-ми аппаратами.

На рис. 15,6 показана схема включения лампы с позистором, когда для зажигания лампы требуется повышенное напряжение холостого хода. Параллельно лампе включена ветвь, содержащая конденсатор С и позистор rl, и вторая ветвь с позистором г2. При подаче на лампу напряжения питания в контуре, образованном дросселем Др и конденсатором С, возникают резонансные явления, и напряжение на лампе повышается. Позистор г2 имеет малое "холодное" сопротивление, поэтому ток предварительного подогрева большой. После предварительного подогрева электродов лампа зажигается, одновременно возрастают сопротивления rl и г2 и конденсатор С практически отключается от цепи с помощью позистора г2.

На

рис. 16 показаны варианты устройств с двумя параллельными цепочками: одна из которых коммутирующая, вторая формирующая импульсы. На рис. 16,а коммутирующая цепь состоит из динистора VD1, а цепь формирования импульсов состоит из последовательно соединенных диода VD2 и конденсатора С, параллельно которому подключен резистор R. В пусковом режиме устройство работает оба полупериода. В течение одного полупериода динистор пробивается и осуществляется подогрев электродов лампы, в течение второго полупериода на лампу подается зажигающий импульс. Амплитуда импульса должна быть недостаточной для зажигания холодной лампы. После зажигания лампы коммутирующая цепь отключается. На рис. 16,6 коммутирующая цепь состоит из двух динисторов VD1 и VD2, первый из которых зашунтирован резистором R. С помощью этого резистора можно выбрать соответствующее напряжение включения динисторов и обеспечить оптимальный пусковой ток в зависимости от мощности лампы.

Интересным направлением в области применения полупроводниковых приборов в схемах зажигания ламп является создание полупроводникового балласта, который применяется вместо обычного индуктивного балласта. В качестве примера можно привести устройство на

рис.17. Люминесцентная лампа включена в сеть с помощью накального повышающего трансформатора НТ. Первичная обмотка НТ подключена к сети через симистор VS1 и конденсатор СЗ. Параллельно симистору VS1 включена цепь R1C1 через симметричный динистор VD1. Вторая аналогичная ячейка, состоящая из симистора VS2, динистора VD2 и цепочки R2C2, включена параллельно накальному трансформатору НТ и конденсатору СЗ. Дроссель Др небольшой индуктивности препятствует отпиранию VS2 раньше, чем открылся VS1. При подаче напряжения питания на схему VS1 заперт, ток через резистор R1 заряжает С1. После заряда конденсатора С1 динистор VD1 пробивается, и на управляющий электрод VS1 подается управляющий импульс. VS1 открывается, и через первичную обмотку НТ и конденсатор СЗ начинает протекать ток, значение которого ограничивает СЗ. Во вторичной обмотке НТ появляются напряжение и ток, достаточные для зажигания и горения лампы, Одновременно начинается заряд конденсатора С2, пробой динистора VD2 и открывание симистора VS2. Сдвиг по фазе открытия VS2 по отношению к VS1 регулируется индуктивностью дросселя Др. При открытии VS2 закрывается VS1, и ток разряда конденсатора СЗ индуктирует в лампе ток в направлении, противоположном первоначальному. После разряда СЗ процесс повторяется. Таким образом, через лампу протекает ток повышенной частоты.

Эта схема эффективна при пониженном напряжении сети и применении для питания лампы повышенной частоты 800... 1000 Гц. По сравнению с обычной балластной эта схема имеет преимущества: меньшие потери мощности в ПРА, повышенная световая отдача лампы и больший срок ее службы.



Работа люминесцентных ламп на постоянном токе

При включении люминесцентных ламп в сеть постоянного тока имеет место ряд явлений, которые вносят определенные особенности в их работу; схемы включения ламп в сеть отличаются от вышерассмотренных схем переменного тока.

При питании ламп постоянным током полярность электродов остается неизменной, поэтому электроды лампы работают в неодинаковом режиме: электрод, являющийся анодом, перегревается, и для сохранения необходимого срока службы лампы требуются различные конструкции анода и катода. Но на практике такие лампы почти не выпускаются и нужно использовать стандартные. А для стандартных ламп приходится время от времени проводить переполюсовку ламп, чтобы износ электродов происходил равномерно.

люминесцентные лампы люминесцентные лампы

Кроме того, при работе ламп на постоянном токе наблюдается явление катафореза, связанное с тем, что положительные ионы ртути под действием электрического поля в процессе работы лампы перемещаются к катоду, в результате анодный конец лампы обедняется ртутью. У катода положительные ионы ртути нейтрализуются, превращаясь в атомы ртути, и излишняя ртуть конденсируется на стенках трубки. В рабочем режиме плотность паров ртути по длине трубки получается неодинаковой, яркость свечения лампы уменьшается, и через несколько десятков часов работы лампы ее яркость может уменьшиться вдвое. Появление катафореза тоже вынуждает проводить переполюсовку через определенные промежутки времени.

В качестве балласта при питании ламп постоянным током применяют активное сопротивление либо в виде резистора, либо в виде лампы накаливания. Напряжение на активном балласте равно разности между напряжением сети и рабочим напряжением на лампе. Поэтому потери мощности в балласте могут в 1,5-2 раза превышать мощность лампы, по этой причине этот способ стабилизации лампы оказывается экономически невыгодным. Применение балластной лампы накаливания улучшает общую экономичность комплекта за счет дополнительного светового потока, созданного лампой накаливания.

люминесцентные лампы

При использовании в цепи постоянного тока стандартной люминесцентной лампы для сохранения ее светового потока на уровне, который она имела при питании на переменном токе, рабочий ток лампы должен быть уменьшен на 10-20% по сравнению с током при работе на переменном напряжении.

Требования к предварительному подогреву электродов лампы и обеспечению определенного уровня напряжения холостого хода ПРА для зажигания лампы остаются примерно аналогичными, как и для переменного тока. Для исключения холодных зажиганий ламп подача поджигающего импульса должна производиться при достаточно прогретых электродах. В отличие от работы лампы на переменном токе при использовании для образования зажигающего импульса дросселя на размер импульса не влияет момент переключения схемы с режима предварительного подогрева на рабочий режим, так как в дросселе протекает постоянный по времени ток. Сопротивление дросселя определяется только его активным сопротивлением.

Рассмотрим простейшие схемы включения люминесцентных ламп на постоянном токе. На

рис.18,а показана схема включения люминесцентной лампы с предварительным нагревом электродов, работающей от сети с напряжением, достаточным для ее зажигания. Напряжение зажигания на постоянном токе выше напряжения зажигания на переменном токе. Это объясняется тем, что электрическое поле на участках "электрод-стенка" и между электродами однородное. Стандартные лампы при включении в рассматриваемую схему должны быть снабжены проводящей полосой, а напряжение сети должно превышать в 3-4 раза рабочее напряжение лампы. Предварительный нагрев электродов обеспечивается при замыкании выключателя В2. Переход из пускового режима в рабочий произойдет, когда напряжение зажигания лампы снизится и станет меньшим напряжения сети. В рабочем режиме выключатель В2 разомкнут.

Более рациональная схема приведена на

рис. 18,6. Для уменьшения требуемого напряжения питания и возможности использования стандартных ламп без проводящей полосы в цепь лампы включают дроссель и применяют стартер постоянного тока, работающий на принципе теплового стартера. В нормальном состоянии его контакты замкнуты. При подаче на лампу напряжения питания начинается предварительный подогрев ее электродов. Одновременно с этим тепловой эле-

мент стартера обеспечивает с не- _ которой задержкой времени размыкание контактов стартера. При разрыве контактов стартера за счет индуктивности дросселя воз-никает импульс напряжения, необ-ходимый для зажигания лампы. В этой схеме напряжение сети должно быть примерно в 2 раза выше рабочего напряжения лампы.

люминесцентные лампы
люминесцентные лампы

Во всех случаях предусматривается возможность переполюсовки ламп через определенный промежуток времени. При питании ламп через выпрямитель от сети переменного тока представляется целесообразным балласт устанавливать на стороне переменного тока и применять для этого дроссель или трансформатор с рассеянием.



Работа люминесцентных ламп на повышенной частоте. С ростом частоты питающего напряжения значения токов, напряжений и коэффициентов мощности ламп с различными типами балластов (R, L, С) сближаются между собой , а начиная с частот 800-1000 Гц, практически перестают зависеть от типа балласта. Уменьшение влияния типа балласта на электрические характеристики ламп при повышении частоты объясняется тем, что с ростом частоты динамические характеристики разряда приближаются к равновесию. Форма кривых тока и напряжения для всех типов балластов показана на

рис.19, где первая колонка относится к индуктивному балласту, вторая -к резистивному, а третья - к емкостному. С ростом частоты коэффици-

ент пульсаций светового потока монотонно падает (50 Гц - 60%, 1000 Гц - 25%, 5000 Гц - 10%). Падение происходит за счет инерционности свечения люминофора и появления постоянной составляющей в излучении разряда, начиная с 400 Гц.

С ростом частоты наблюдается неравномерный рост световой отдачи, продолжающийся примерно до 20000 Гц. При дальнейшем повышении частоты отдача растет незначительно. Параметры энергоэкономичной лампы мощностью 58 Вт при работе на частотах 50 Гц и 35 кГц приведены в

таблице.

люминесцентные лампы

Из таблицы видно, что при переходе на повышенную частоту светоотдача комплекта лампа-ПРА повышается на 20%.

Срок службы ламп на частоте 1 кГц примерно на 15% выше, чем на промышленной частоте в том же режиме. Но при дальнейшем повышении частоты продолжительность горения быстро падает: на частоте 10 кГц она уже на 15% меньше, чем на промышленной частоте.

Условия стабилизации разряда на повышенной частоте остаются в общем теми же, что и на промышленной. Поэтому в качестве стабилизирующего сопротивления можно применять индуктивный, емкостной или смешанный балласты. С ростом частоты будут заметно уменьшаться масса и габариты ПРА. Например, при переходе с частоты 50 Гц на частоту 3000 Гц масса дросселя уменьшается более чем в 30 раз (в ка-

честве сердечника нужно применять не электротехническую сталь, а феррит или альсифер). Более того, на высоких частотах целесообразнее применять не индуктивность, а емкость.

На

рис.20 показана структурная схема осветительной установки с питанием ламп на повышенной частоте. Переменный ток промышленной частоты следует сначала преобразовать в постоянный ток с помощью выпрямителя. Далее постоянный ток инвертируется в переменный ток повышенной частоты и по распределительной сети подводится к ПРА и лампам.

На

рис.21 приведены простые схемы включения ламп на повышенной частоте. На этих частотах стартеры не обеспечивают надежного зажигания люминесцентных ламп из-за уменьшения времени контактирования и невозможности получения достаточного зажигающего импульса напряжения на лампе из-за уменьшения индуктивности цепи, поэтому можно применять только бесстартер-ные схемы зажигания ламп.

Параметр

50 Гц

35 кГц

Ток, А

0,67

0,55

Мощность лампы, Вт

58

53

Потери в ПРА, Вт

17

7

Мощность лампы и ПРА, Вт

75

60

Светоотдача комплекта, %

100

120

люминесцентные лампы

На

рис.21 а,б приведены резонансные схемы быстрого зажигания. Предварительный подогрев электродов осуществляется током резонансного контура, образованного индуктивностью и емкостью. За счет падения напряжения на цепи, параллельной лампе, в пусковом режиме создается необходимое зажигающее напряжение, превышающее в 1,5-2 раза номинальное напряжение сети.

Необходимое напряжение холостого хода ПРА создается за счет резонансных явлений в цепи индуктивности и емкости.

Схема на

рис.21,в отличается от предыдущих резонансных схем тем, что для предварительного подогрева электродов введен специальный накальный трансформатор, а в качестве балласта используется емкость. Возможно применение балластного дросселя, но при этом напряжение сети должно быть достаточным для зажигания лампы с подогревными катодами.

 



Регулирование яркости люминесцентных ламп

В отличие от ламп накаливания, для которых плавное регулирование яркости решается достаточно просто, для люминесцентных ламп требуется выполнение определенных условий. Отличие методов регулирования объясняется различным характером зависимости светового потока от тока через лампу для ламп накаливания и люминесцентных. Кроме того, падающая вольт-амперная характеристика люминесцентных ламп и повышение напряжения повторного зажигания при уменьшении тока через лампу делают невозможным регулирование их яркости путем проаого снижения напряжения на лампе. Яркость люминесцентной лампы можно уменьшить путем регулирования тока через лампу, но при сохранении неизменным или даже несколько повышенном напряжении на ней. При этом следует применять лампы с предварительным подогревом электродов, снабженные проводящей полосой.

Возможны три метода регулирования яркости люминесцентных ламп: изменением напряжения, подаваемого на регулирую-

щий элемент; изменением полного сопротивления балласта; регулированием фазы зажигания лампы. Во всех трех методах регулирование яркости лампы осуществляется за счет изменения тока, проходящего через лампу. Первые два метода имеют ограниченное применение из-за недостатков. Наиболее экономичным является метод фазовой регулировки времени зажигания лампы.

На

рис.22 показана простейшая схема регулирования яркости одной лампы по третьему методу. Последовательно с лампой, кроме балластного дросселя, включен резистор Rn с регулируемым сопротивлением, значение которого определяется мощностью лампы (для лампы 40 Вт оно составляет 1...1,5 МОм). Предварительный подогрев электродов осуществляется на-кальным трансформатором. Изменяя сопротивление резистора, регулируют яркость лампы. Такая схема применима и для нескольких последовательно включенных ламп. При параллельном включении ламп каждая должна иметь свой балласт и на-кальный трансформатор. Регулируемое сопротивление включают в каждую парал-

лельную ветвь и объединяют общим проводом. Данный метод позволяет регулировать яркость в примерно 300 раз и может быть использован в небольших установках с 8-10 лампами. При большом числе ламп этот метод становится неэкономичным.

На

рис.23 показана принципиальная схема регулирования яркости люминесцентной лампы с дросселем, подмагничивае-мым постоянным током - магнитным усилителем (МУ). Одна обмотка дросселя включена последовательно с лампой и выполняет роль балластного сопротивления, вторая (управляющая) питается постоянным током от двухполупериодного выпрямителя. Для изменения тока в управляющей обмотке последовательно с ней включен регулируемый резистор. С увеличением тока в управляющей обмотке сопротивление дросселя переменному току уменьшается, и ток лампы растет. Для предварительного подогрева электродов ламп служит накальный трансформатор.

Недостатки этого метода - громоздкость регулирующих устройств и повышенные потери мощности, поэтому применение магнитных усилителей для регулирования можно рекомендовать при небольшом количестве ламп.

люминесцентные лампы
люминесцентные лампылюминесцентные лампы
люминесцентные лампы

Перспективная схема регулирования яркости люминесцентных ламп, в которой используются два источника питания: один основной, имеющий промышленную частоту, и второй вспомогательный, включенный параллельно с первым и подающий к лампам напряжение повышенной частоты показана на

рис.24. Группа параллельно включенных ламп, имеющих индивидуальные балластные дроссели и накальные трансформаторы для предварительного подогрева электродов, питается через автотрансформатор AT от сети с частотой 50 Гц. Между автотрансформатором и лампами включен вспомогательный источник высокой частоты ИВЧ, например 5-15 кГц. Для исключения замыкания этих источников питания друг на друга последовательно с каждым из них включен развязывающий и запирающий фильтр, рассчитанный соответственно на частоты 50 Гц и 5-15 кГц.

При номинальном напряжении питания воздействие дополнительного высокочастотного напряжения мало, и оно практически не влияет на яркость ламп. При снижении напряжения на лампах с помощью автотрансформатора изменяется мощность, подводимая к лампам, и их яркость уменьшается. Вместо автотрансформатора для регулирования напряжения можно быть использовать тиристорный блок. Такой блок регулятора состоит из двух тиристоров, включенных встречно-параллельно (или си-мистора), и датчика зажигающих импульсов. Путем регулирования фазы зажигающих импульсов, подаваемых на управляющие электроды тиристоров, можно изменять ток, проходящий через нагрузку. Когда напряжение питания будет снижено до нуля, лампы окажутся включенными на источник высокой частоты, ток через лампы становится весьма малым, но в то же время достаточным для поддержания стабильного горения ламп. Таким образом, источник высокой частоты обеспечивает зажигание и перезажигание ламп при малом напряжении питания, т.е. при минимальной яркости. Мощность высокочастотного источника питания должна составлять примерно 1% мощности ламп.

люминесцентные лампы

Приведенная схема позволяет плавно регулировать яркость люминесцентных ламп в 200 раз и ее можно использовать в любой действующей осветительной установке, так как не требуется существенная переделка.

На

рис.25 показана схема преобразователя частоты на транзисторах с задающим генератором, позволяющим получить частоту и амплитуду выходного напряжения, почти не зависящими от изменения нагрузки. Задающий генератор собран на транзисторах VT1 и VT2 с насыщающимся дросселем Др в цепи обратной связи. Двухтактный усилитель мощности собран на двух транзисторах VT3 и VT4. Преобразователь рассчитан на выходную частоту 5 кГц. Такой преобразователь может обеспечить регулирование яркости 50-60 люминесцентных ламп мощностью 40 Вт. Применение вместо транзисторов тиристоров позволяет создать более мощные преобразователи.

Недостаток этого преобразователя - сильное влияние на его работу емкостного характера нагрузки, в результате чего ограничивается выходная мощность. Этот недостаток схемы можно устранить, если емкостную нагрузку включать как составной элемент резонансного задающего контура.

На

рис.26 приведена схема преобразователя, построенная на этом принципе. Благодаря тому что емкостная нагрузка введена в задающий резонансный контур, этот контур становится не только задающим, но и нагрузочным. Токи через базу и коллектор каждого транзистора совпадают по фазе и имеют форму полусинусоиды, поэтому коммутационные потери в транзисторах снижаются почти до нуля, что позволяет использовать преобразователь на максимальную мощность. В данной схеме использовались транзисторы типа КТ805Б. Запуск преобразователя осуществляется от релаксационного генератора, собранного из RC-цепочки и переключающих диодов VD1, VD2. Опытный образец преобразователя, собранного по этой схеме, имел мощность 200 Вт и обеспечивал регулирование яркости 150 ламп типа ЛБ-40.




   Rambler's Top100      
Электрик © 2002-2008 Oleg Kuznetsov