Электрик - электричество и энергетика

Эта статья опубликована на сайте Электрик - электричество и энергетика
  http://www.electrik.org/

URL этой статьи:
  http://www.electrik.org/news/article165.php

Диагностика состояния электродвигателей на основе спектрального анализа потребляемого тока

Статьи / О вреде электричества
Послано electrik 06 Апр, 2005 г. - 12:45




Центр электромагнитной безопасности. Петухов В.С. к.т.н., член IEEE, Соколов В.А.

В настоящее время двигатели переменного тока являются крупнейшими потребителями электрической энергии. Согласно последним исследованиям, они потребляют свыше 80% вырабатываемой электроэнергии. Однако в процессе эксплуатации могут возникать повреждения элементов двигателя, что в свою очередь приводит к преждевременному выходу его из строя.

Многочисленные исследования характера повреждений двигателей переменного тока позволили получить следующие статистические данные /1-2/:

• Повреждения элементов статора - 38%
• Повреждения элементов ротора - 10%
• Повреждения элементов подшипников - 40%
• Другие повреждения - 12%

Во многих производствах внезапный выход из строя двигателя может привести к непоправимым последствиям. Кроме того, эксплуатация находящихся в неудовлетворительном техническом состоянии электродвигателей приводит как к прямым финансовым потерям, связанным с непрогнозируемым выходом из строя оборудования и вызванным этим нарушением технологического процесса, так и к значительным (до 5-7%) косвенным непродуктивным затратам электроэнергии, обусловленным повышенным электропотреблением (при той же полезной мощности). Поэтому возникает необходимость диагностики состояния двигателя в процессе его работы. Сегодня в России широко используется метод вибродиагностики состояния элементов электродвигателей. Данный метод является достаточно дорогим и трудоемким, требующим применения специальной измерительной техники и программного обеспечения. Кроме того, должен быть обеспечен доступ к обследуемому объекту, что в некоторых случаях сопряжено с определенными организационными и техническими трудностями.

В последнее время получили развитие методы диагностики состояния электрических машин, основанные на выполнении мониторинга потребляемого тока с последующим выполнением специального спектрального анализа полученного сигнала /3-8/, что позволяет с высокой степенью достоверности определять состояние различных элементов двигателя.

Кроме того, проведение мониторинга тока электродвигателя может быть выполнено как непосредственно на нем, так и в электрощите питания (управления).

В настоящее время специалистами Центра электромагнитной безопасности разработан аппаратно - программный комплекс для выполнения работ по аудиту состояния и условий работы электрической и механической части электродвигателей и связанных с ними механических устройств на основе спектрального анализа сигналов потребляемого электродвигателем тока. Блок – схема комплекса представлена на рис. 1.



Рис. 1 Блок – схема диагностического комплекса

В состав комплекса входят разъемный токовый датчик с линейной частотной характеристикой, кондиционер сигнала (фильтр низких частот, препятствующий появлению ложных частот сигналов (aliasing) при их дискретизации /9/, аналого- цифровой преобразователь (АЦП), персональный компьютер (ПК) с необходимым программным обеспечением для сбора и обработки информации.
Запись сигналов тока осуществляется в течение времени, необходимого для выполнения спектрального анализа с разрешением по частоте не менее 0.01-0.02 Гц.
Оцифрованные АЦП данные передаются в ПК, где выполняется обработка полученных данных: определяется частота вращения двигателя и число стержней его ротора, затем выполняется специальный спектральный анализ сигнала тока.
Физический принцип, положенный в основу работы диагностического комплекса, заключается в том, что любые возмущения в работе электрической и/или механической части электродвигателя и связанного с ним устройства приводят к изменениям магнитного потока в зазоре электрической машины и, следовательно, к слабой модуляции потребляемого электродвигателем тока.
Таким образом, наличие в спектре тока двигателя характерных (и не совпадающих) частот определенной величины свидетельствует о наличии повреждений электрической и/или механической части электродвигателя и связанного с ним механического устройства /1/.

В качестве примера ниже приведены результаты спектрального анализа токов двух однотипных вентиляторных установок: находящейся в эксплуатации 1 неделю (рис.2) и проработавшей 5 лет (рис 3).



Рис 2. Спектральный состав тока нового электродвигателя



Рис 3. Спектральный состав тока электродвигателя, находящегося в эксплуатации в течение5 лет

На вышеприведенных рисунках ясно видно как увеличение количества частотных полос, соответствующих различным видам повреждений, так и рост их величины (при зна’чимом уровне сигналов в частотной области от –80 дБ) для электродвигателя, длительно находящегося в работе.

Остановимся более подробно на возможностях рассматриваемого метода диагностики с точки зрения обнаружения различных видов повреждений и характерных для них частот.
Повреждения ротора двигателя (обрыв стержней, ослабление крепления стержней к контактным кольцам, скрытые дефекта литья).
Этот вид неисправности обнаруживается по наличию 2-х симметричных относительно частоты питающей сети пиков в спектре тока (см. рис. 4).



Рис4. Частоты, характерные для повреждений ротора

Несоосность валов двигателя и механической нагрузки. Этот вид неисправности определяется по частотам, кратным частоте вращения ротора (см. рис. 5)



Рис 5. Характерные частоты при наличии несоосности валов двигателя и механической нагрузки

Дефекты ременной передачи вентилятора. Этот вид неисправности определяется по частотам, кратным частоте биений ремня, определяемой длиной последнего и диаметрами шкивов (см. рис. 6)



Рис 6. Характерные частоты при наличии дефектов ременной передачи

Аналогичным образом определяется и наличие таких дефектов, как:
- межвитковые замыкания обмоток статора;
- повреждения подшипников (необходимы данные о подшипниках электродвигателя и механического устройства);
- повышенный эксцентриситет ротора (статический и/или динамический);
- ослабление элементов крепления электродвигателя;
- дефекты механической части связанных с электродвигателем устройств.

Определение степени серьезности повреждений производится по градации «Повреждения отсутствуют» - «Повреждения обнаружены» - «Обнаружены критичные повреждения» путем сравнения величины сигнала на характерной частоты повреждения с величиной сигнала на частоте питающей сети.

При проведении повторных измерений на данном оборудовании формируется база данных, позво-ляющая отслеживать динамику развития повреждений во времени, что дает возможность заблаго-временно планировать выведение оборудования в ремонт.

Помимо вышеописанных измерений, настоятельно рекомендуется проведение мониторинга прило-женного к электродвигателю напряжения, что позволяет определить его несимметрию, наличие высших гармонических составляющих и импульсов перенапряжений (что возможно при работе с частотными регуляторами скорости вращения) – т.е. тех факторов, которые напрямую влияют на срок службы и экономичность работы двигателя. Хорошо известно, что первые два из вышеупомяну-тых факторов приводят как к перегреву обмоток статора, так и повреждению подшипников за счет возникновения высокочастотных вращающих моментов обратной последовательности.
Измерения могут быть выполнены как непосредственно на клеммной коробке электродвигателя (без какого-либо нарушения режима его работы), так и в электрощите питания и/или управления.

Выполнение этой работы позволит провести полномасштабную натурную диагностику и анализ условий работы парка электродвигателей и связанных с ними механических устройств, существенно сократить как затраты, связанные с «неожиданными» отказами оборудования, так и снизить непро-дуктивные затраты электроэнергии.


Литература

1. W. T. Thomson : "A Review of On-Line Condition Monitoring Techniques for Three-Phase Squirrel-Cage Induction Motors -Past Present and Future" Keynote address at IEEE Symposium on Diagnos-tics for Electrical Machines, Power Electronics and Drives, Gijon, Spain, Sept. 1999 pp 3-18.
2. EPRI: "Improved Motors for Utility Applications and Improved Motors for Utility Applications, Industry Assessment Study", Vol 1, EPRI EL-2678, Vol 1 1763-1, final report and EPRI EL-2678, Vol 2,1763-1 final report October 1982
3. V Thorsen and M Dalva: "Condition Monitoring Methods, Failure Identification and Analysis for High Voltage Motors in Petrochemical Industry", Proc 8a 1EE Int Conf, EMD'97, University of Cambridge, No 444, pp 109-113
4. W T Thomson and D Rankin; "Case Histories of Rotor Winding Fault Diagnosis in Induction Mo-tors", 21"1 Int Conf Proc on Condition Monitoring, University College Swansea, March 1987
5. G B Kliman and J Stein: "Induction Motor Fault Detection Via Passive Current Monitoring", Proc Int Conf (ICEM'90), MIT, Boston, USA, 1990, pp 13-17
6. W T Thomson, S J Chalmers and D Rankin: "On-line Current Monitoring and Fault Diagnosis in High Voltage Induction Motors - Case Histories and Cost Savings in Offshore Installations", Offshore Europe '87, Conf Proc SPE September 1987, Aberdeen, SPE 16577/1 - SPE 16577/10
7. Randy R. Schoen, Thomas G. Habetler, Farrukh Kamran, Robert G. Barthel “Motor Bearing Damage Detection Using Stator Current Monitoring” IEEE TRANSACTIONS ON INDUSTRY APPLICA-TIONS, VOL.31, NO. 6, November/December 1995
8. William T.Thomson, Mark Fenger “Current Signature Analysis to Detect Induction Motor Faults”IEEE Industry Application Magazine July/August 2001. 9. Сергиенко А.Б. Цифровая обработка сигналов. – СПб., Питер, 2002.-608с. ил.

Оригинал статьи в архиве можно загрузить здесь [1]




Ссылки в этой статье
  [1] http://electrik.org/book/dwigateli.zip

   Rambler's Top100      
Электрик © 2002-2008 Oleg Kuznetsov